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Abstract
We study planar noncommutative theories such that the spatial coordinates
x̂1, x̂2 verify a commutation relation of the form: [x̂1, x̂2] = iθ(x̂1, x̂2).
Starting from the operatorial representation for dynamical variables in the
algebra generated by x̂1 and x̂2 , we introduce a noncommutative product
of functions corresponding to a specific operator-ordering prescription. We
define derivatives and traces, and use them to construct scalar-field actions.
The resulting expressions allow one to consider situations where an expansion
in powers of θ and its derivatives is not necessarily valid. In particular, we
study in detail the case when θ vanishes along a linear region. We show that,
in that case, a scalar field action generates a boundary term, localized around
the line where θ vanishes.

PACS numbers: 11.10.Nx, 11.10.Kk

1. Introduction

Noncommutative quantum field theories1 have recently attracted renewed attention, not only
because of their relevance to string theory [1, 3], but also in the condensed matter physics
context, since they have been proposed as effective descriptions of the Laughlin states in
the quantum Hall effect [4–6]. Noncommutativity has also been introduced to describe the
skyrmionic excitations of the quantum Hall ferromagnet at ν = 1 [7, 8].

A planar system of charged particles in the presence of an external magnetic field has
a very rich structure, in part because of the peculiarities of the Landau level spectrum for a
single particle [9]. A noncommutative description is usually invoked as a way to describe a
restriction to the lowest Landau level, a step which is justified by the existence of a large gap
between the lowest and higher Landau Levels [10, 11]. This restriction cannot be introduced
as a smooth limit of the full (all level) system, since there is a change in the number of

1 See, for example, [1, 2] for pedagogical reviews.
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physical degrees of freedom, an effect that has been known since the early studies on Chern–
Simons quantum mechanics [12], and which is entirely analogous to the reduction from the
Maxwell–Chern–Simons action into the pure Chern–Simons theory [12, 13].

In this paper, we address the problem of describing planar noncommutative theories
where θ , the noncommutativity parameter, is a space-dependent object. If the dependence of
θ is sufficiently smooth, this phenomenon can be studied within the deformation quantization
approach [14], since it naturally allows for an expansion in powers of θ and its derivatives.
We are, however, interested in the cases where θ is not necessarily smooth, namely, when θ

may have an appreciable variation over length scales of the order of
√

θ . For example, one
may think of situations where θ has first-order zeros in a certain region of the plane.

It is important to have the tools to describe that sort of situation, since it may naturally
occur in the condensed matter physics context. For example, when the relation between the
magnetic field and the effective mass is space dependent; or one could want to study interfaces
that divide regions with different noncommutativity parameters. If that interface is rather
narrow, an expansion in powers of θ and its derivatives will certainly be unreliable.

A way to deal with the case of a θ that depends on only one of the variables has been
presented in [15]. Our approach is instead based on the use of a particular mapping between
the operatorial representation of the theory, and its functional version. We construct the
noncommutative theory in a way that is in principle valid for a more general θ , although
explicit results are presented for the case of a θ that depends on one variable.

The analysis of theories with space-dependent noncommutativity has been full of technical
difficulties, both at the mathematical and physical levels. Much effort has been devoted in
recent years to understanding their fundamental properties. In [16] Kontsevich’s construction
is interpreted in terms of a path integral over a sigma model. On the other hand, the relation
between the noncommutativity function and curved branes in curved backgrounds has been
studied in [17]. Besides, in [18], it is shown how to construct U(1) gauge-invariant actions
when the noncommutativity is space dependent. See also [19] for a formulation of gauge
theories on spaces where the commutator between space coordinates is linear or quadratic in
those coordinates.

The structure of this paper is as follows: in section 2 we set up the general framework,
defining the elements that are required to construct the noncommutative field theory in the
operatorial version of the algebra. In section 3, we deal with the representation of the theory
in its functional form, namely, using functions with a �-product. These general results are
applied, in section 4, to the case in which θ(x̂) is an invertible operator, and depends on
x̂1 and x̂2 only through a linear combination of them, i.e., θ(x̂1, x̂2) = θ(c1x̂1 + c2x̂2). In
section 5, for a θ(x̂) with an analogous dependence, we allow for a null eigenvalue, and discuss
the physical consequences of that property. Finally, in section 6, we present our conclusions.

2. Operatorial description

We shall consider quantum field theories defined on a two-dimensional noncommutative region
generated by two elements, x̂1 and x̂2, which satisfy a local commutation relation

[x̂j , x̂k] = iεjkθ(x̂), (1)

where j, k = 1, 2 and x̂1, x̂2 denote Hermitian operators on a Hilbert space H. θ(x̂), also a
Hermitian operator, is a local function of x̂1 and x̂2. The form of θ will be further restricted
later on, when considering some particular examples. That will allow us to derive more
explicit results, at least under simplifying assumptions.
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We are interested in defining field theory actions for fields that belong to the space A, the
algebra generated by (x̂1, x̂2). To accomplish that goal, one has to introduce two independent
derivations (corresponding to the two coordinates x̂1 andx̂2) plus an integration on A. Since
the fields, their products and linear combinations, are all elements of A, one can, as usual,
define the integral as the trace of the corresponding product of fields. Indeed,∫

A(x̂i) ≡ Tr[A(x̂i)], (2)

for any A ∈ A, has the property of being linear and invariant under cyclic permutation of the
factors in a product.

Regarding the derivatives D̂j , in the present context they are required to verify the
following properties:

(i) the D̂j are linear operators;
(ii) they satisfy the Leibnitz rule: D̂j (AB) = (D̂jA)B + A(D̂jB);

(iii) the integral of a derivative vanishes: Tr[D̂jA(x̂)] = 0;
(iv) when θ → const, D̂j → ∂j ; this condition is not part of the formal definition of the

derivatives, but we impose it in order to define actions that are comparable with their
constant-θ counterparts.

Conditions (i)–(iii) are automatically satisfied if one uses inner derivations, i.e., those
that can be written as commutators: D̂jA ≡ [dj , A], with dj ∈ A. When θ(x̂) does have an
inverse (denoted by θ−1(x̂)), in A, a suitable choice for the dj is given by the expression:

dj ≡ i

2
εjk{θ−1(x̂), x̂k}, (3)

where {, } denotes the anticommutator. Conditions (i)–(iii) are then valid (as for any inner
derivation); regarding condition (iv), by acting on the generators of the algebra we see that

D̂j x̂k = δjk +
i

2
εjl{x̂l , [θ−1(x̂), x̂k]}. (4)

Hence, condition (iv) is also fulfilled.
The final ingredient is the notion of adjoint conjugation. A† is defined, as usual, by

〈f |A†|g〉 = 〈g|A|f 〉 ∀ f, g ∈ H. (5)

Since d
†
j = −dj , we see that the derivative of a Hermitian element of A will also be Hermitian.

We are now equipped to construct a noncommutative field theory in (2 + 1) dimensions,
the simplest example being that of a scalar field action S for a Hermitian field φ:

S =
∫

dt Tr

[
1

2
Dµφ(x̂, t)Dµφ(x̂, t) + V (φ)

]
(6)

where Dµ ≡ (∂t , D̂1, D̂2) (the time coordinate is assumed to be commutative) and V (φ) is
positive definite.

Although this is, indeed, a perfectly valid representation for a scalar field action on a
noncommutative two-dimensional region, its form is inconvenient if one has in mind its use
in concrete (e.g., perturbative) calculations. Besides, the quantization of the theory becomes
problematic, and it is also rather difficult to compare results with those of its commutative
counterpart.

To address this problem, in the following section we consider the equivalent description of
the noncommutative theory in terms of functions equipped with a noncommutative �-product.
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3. Functional approach

In this setting, the dynamical fields are not operators, but rather elements of C∞(R2+1), and
the (noncommutative) product between the operators in A is mapped onto a noncommutative
�-product.

This is, indeed, the idea behind the deformation quantization [20]; the tools and ideas
needed to deal with this problem in a rather general setting have already been constructed
(see, e.g., [20] and [14]). Explicit expressions within this approach, however, are difficult
to derive, except when θ verifies certain regularity conditions, which allow the resulting
�-product to be expressed by an expansion in powers of θ and its derivatives. By ‘regularity
conditions’ we mean that θ has to be sufficiently smooth for that expansion to converge. The
measure of the smoothness is given by the relation between those derivatives and the (only)
other dimensionful object, namely θ . More explicitly, we should have: ∂j θ/θ1/2 	 1. We
want to consider here situations where this condition for θ is not met (e.g., when θ vanishes
with a nonzero derivative) so that an expansion in powers of θ and its derivatives is either
not possible or unreliable. We do that by using a particular approach for the representation
of the noncommutative algebra of operators over the space of functions, which bypasses
the discussion on deformation quantization. In this way, we shall obtain a noncommutative
�-product which is valid even when such an expansion makes no sense. This �-product is
based on the operatorial approach of section 2, and it follows from the introduction of a specific
mapping between operators and functions.

3.1. Normal-ordering and kernel representations

A one-to-one correspondence between operators A(x̂) and functions A(x) can be obtained
by introducing a specific operator-ordering prescription. Here, we shall restrict the class of
operators considered to those that can be put into a ‘normal-ordered’ form. We define that
form by the condition that all the x̂1 have to appear to the left of all the x̂2 in the expansion of
A(x̂) in powers of x̂1 and x̂2. Namely, we shall consider the subspace A′ of A that consists of
all the operators A(x̂) that can be represented as follows:

A(x̂) =
∑
m,n

amnx̂
m
1 x̂n

2 (7)

where the amn are (complex) constants2.
For some particular forms of θ , any monomial in x̂1 and x̂2 can be converted into a

normal-ordered form by performing a finite or infinite number of transpositions. For example,
when θ is a normal-ordered formal series (what we shall assume), we can map any monomial
in x̂1, x̂2 into normal order, albeit the monomial will be now equivalent to an infinite normal-
ordered series. We shall later on consider a specific example which corresponds to a much
simpler situation: a θ which depends only on the variable x̂1. In that case, every monomial is
equivalent to a normal-ordered polynomial.

Thus for every operator A(x̂) in A′, we have A(x̂) = AN(x̂) where AN(x̂) is its normal-
ordered form. We assign to each A(x̂) the (c-number) function AN(x), obtained by replacing
in AN(x̂) the operators x̂i by commutative coordinates xi . We then have a one-to-one
mapping S:

A(x̂) → S[A(x̂)] = AN(x). (8)

2 A′ and A can coincide or be isomorphic. That would be the case, for example, if the Poincaré–Birkhoff–Witt
property were satisfied for A.
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To each operator A(x̂) we can also associate another function: its ‘mixed’ integral kernel
AK(x1, x2)

AK(x1, x2) = 〈x1|A(x̂1, x̂2)|x2〉, (9)

where x̂i |xi〉 = xi |xi〉.
The relation between AN and AK is quite simple; indeed:

AK(x1, x2) = 〈x1|x2〉AN(x1, x2). (10)

Since operator products are easily reformulated in terms of AK , and we know its relation to
AN , we use this relation to define the �-product.

3.2. Definition of the �-product

To represent the algebra A on C∞(R2+1), we define the �-product induced by the map (8):

AN � BN ≡ S[S−1(AN)S−1(BN)]. (11)

On the other hand, equation (10) may be used to obtain an integral representation of the
�-product. Since

(AB)K(x1, x2) =
∫

dx̃1 dx̃2 AK(x1, x̃2)〈x̃2|x̃1〉BK(x̃1, x2), (12)

we take (10) and (11) into account, to arrive at the expression

(AN � BN)(x1, x2) =
∫

dx̃1 dx̃2
〈x1|x̃2〉〈x̃2|x̃1〉〈x̃1|x2〉

〈x1|x2〉 AN(x1, x̃2)BN(x̃1, x2). (13)

This product is evidently noncommutative, and it is also associative:

(AN � BN) � CN = AN � (BN � CN), (14)

a property which can explicitly be verified by using the definition of the �-product, or also
by noting that the associativity of the operator product is inherited by the �-product (by an
application of the normal-order mapping).

Furthermore, it is immediate to prove that (C∞(R2+1), �), henceforth noted as C∞
� ,

reproduces the structure of A. Indeed, a straightforward calculation shows that

[x1, x2]� ≡ x1 � x2 − x2 � x1 = iθN(x). (15)

Equation (13) is an integral representation of the noncommutative algebra (1), which
depends on the function

F(x1, x2; x̃1, x̃2) = 〈x1|x̃2〉〈x̃2|x̃1〉〈x̃1|x2〉
〈x1|x2〉 . (16)

Constructing F(x; x̃) for a general θN(x) is a very complicated problem; from equation (15)
we may derive the integral equation∫

dx̃1 dx̃2 F(x1, x2; x̃1, x̃2) = x1x2 − iθN(x1, x2). (17)

Even an expansion in powers of θ(x) is quite involved if θ has a general dependence on
(x1, x2). However, in section 4 we will show how to obtain explicit expressions for the simpler
case θ = θ(x1).
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3.3. Integral, derivatives and adjoints in C∞
�

On the basis of the results of section 2, we construct the integral and derivatives now on C∞
� . In

what follows, to simplify the notation, we suppress the ‘N’ subscript when denoting a normal
symbol.

If θ(x) is everywhere different from zero, two possible inner derivations are obtained by
rewriting those of the operatorial formulation, namely,

DjA(x) ≡ [dj (x), A(x)]�, (18)

where

dj ≡ i

2
εjk{θ−1(x), xk}�. (19)

In this equation θ−1 is not the usual inverse function, but rather the inverse w.r.t. the �-product,
i.e.,

θ−1(x) ≡ S(θ−1(x̂)).

Since the Dj are �-commutators, they are linear and obviously satisfy the Leibnitz rule,

Dj(A � B) = DjA � B + A � DjB, (20)

which is the C∞
� version of condition (ii) in section 2. However, using the explicit expression

(13) for the �-products in the derivatives, we conclude that∫
dx1 dx2 Dj(A(x)) �= 0, (21)

and ∫
dx1 dx2(A � B)(x) �=

∫
dx1 dx2(B � A)(x), (22)

where
∫

dx1 dx2 is the usual integration over R
2 with a (flat) Euclidean metric. Hence, neither

integration by parts (with respect to Di) nor cyclicity would be valid if this definition of integral
were used. Both of these properties, which are essential in the construction of a sensible field
theory, can fortunately be satisfied if the factor |〈x1|x2〉|2 is included in the integration measure.
Thus, we define the integral as∫

dµ(x)A(x) ≡
∫

dx1 dx2|〈x1|x2〉|2A(x). (23)

The previous definition could also be derived from the operatorial trace, since one notes that

TrA(x̂) =
∫

dx1 dx2|〈x1|x2〉|2AN(x). (24)

Besides, the equalities∫
dµ(x)Di(A(x)) = 0, (25)

∫
dµ(x)(A � B)(x) =

∫
dµ(x)(B � A)(x) (26)

are simple consequences of equation (24).
On the other hand, the adjoint defined in section 2 can be represented in C∞

� by defining

A†(x) = S[A†(x̂)]. (27)

From (5), (9) and (10), (27) can be represented explicitly as

A†(x1, x2) =
∫

dx̃1 dx̃2
〈x1|x̃2〉〈x̃2|x̃1〉〈x̃1|x2〉

〈x1|x2〉 Ā(x̃1, x̃2). (28)
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While in the Weyl ordering prescription the hermiticity of operators is tantamount to reality
of functions, here A†(x̂) = A(x̂) translates into the condition:

A(x1, x2) =
∫

dx̃1 dx̃2
〈x1|x̃2〉〈x̃2|x̃1〉〈x̃1|x2〉

〈x1|x2〉 Ā(x̃1, x̃2). (29)

4. The case θ(x1, x2) = θ(x1)

It is evident that knowledge of 〈x1|x2〉 plays a fundamental role in the definition of the �-
product previously introduced. In order to carry out a more detailed analysis, we restrict
ourselves here to a particular case, tailored such that 〈x1|x2〉 can be evaluated exactly. A
simple way to accomplish this is to consider the following form for θ(x):

[xj , xk]� = iεjkθ(c1x1 + c2x2). (30)

Under the redefinitions: c1x1 + c2x2 → x1, x2 → x2, this relation can be equivalently written
as

[xj , xk]� = iεjkθ(x1). (31)

To obtain 〈x1|x2〉, we come back to the operatorial description of x̂1 and x̂2. The spectra
of those operators can be found by representing them on the space of eigenfunctions of x̂1:

x̂1|x1〉 = x1|x1〉. (32)

On that space, the Hermitian operator x̂2 is represented by

x̂2 = −i
(
θ(x1)∂1 + 1

2θ ′(x1)
)
, (33)

where ∂1 ≡ ∂/∂x1, θ
′(x1) ≡ ∂θ/∂x1. To find 〈x1|x2〉, we need the eigenvectors of x̂2 on the

basis {|x1〉}. Assuming that the operator θ(x̂1) is invertible, which is equivalent to saying that
the function θ(x1) has no zeros3, we can solve the corresponding differential equation to find

〈x1|x2〉 = 1√
2π

θ−1/2(x1) exp

[
ix2

∫ x1

dy1 θ−1(y1)

]
, (34)

which has continuous normalization: 〈x2|x ′
2〉 = δ(x2 − x ′

2). The spectra of both operators x̂1

and x̂2 are the set of all the real numbers. This property is modified, as we shall see, when the
condition on the zeros of θ is relaxed.

4.1. Properties of the �-product

Since |〈x1|x2〉|2 = 1
2π

θ−1(x1), the integration measure in (23) becomes

dµ(x) ≡ 1

2π
dx1 dx2 θ−1(x1). (35)

The noncommutative product of (13) reduces to

(A � B)(x) =
∫

dµ(x̃) exp[i(x2 − x̃2)	g(x1, x̃1)]A(x1, x̃2)B(x̃1, x2), (36)

where

g(x1) ≡
∫ x1

dy1 θ−1(y1), 	g(x1, x̃1) ≡ g(x̃1) − g(x1). (37)

3 This condition will be relaxed later on.
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By using some elementary algebra, we derive the useful relations:

A(x1) � B(x1, x2) = A(x1)B(x1, x2) (38)

A(x1, x2) � B(x2) = A(x1, x2)B(x2) (39)

A(x2) � B(x1) = A(−iθ(x1)∂1 + x2)B(x1). (40)

Furthermore, (38)–(40) may be used to obtain an alternative expression for the �-product.
Writing the generic normal-ordered function as

A(x1, x2) =
∑

n

αA
n (x1)β

A
n (x2), (41)

we see that

A(x1, x2) � B(x1, x2) =
∑
n,m

αA
n (x1)β

A
n (−iθ(x1)∂1 + x2)α

B
m(x1)β

B
m(x2). (42)

Either form (36) or (42) may prove to be more useful, depending on the context. For instance,
if an expansion in powers of θ(x1) and its derivatives is valid, equation (42) gives

AN(x) � BN(x) = AN(x)BN(x) − iθ(x1)∂2AN(x)∂1BN(x)

− 1
2θ2(x1)∂

2
2 AN(x)∂2

1 BN(x) − 1
2θ2(x1)θ

′(x1)∂
2
2 AN(x)∂1BN(x) + · · · . (43)

Let us conclude by considering the derivatives for the present case. From the operatorial
construction, we have the general expression:

DjA(x) = [dj (x), A(x)]�, (44)

where

dj (x) = i

2
εjk{θ−1(x), xk}�. (45)

Applying relations (38)–(40), we may simplify the expressions for the dj for the particular
case θ(x) = θ(x1):

d1(x) = iθ−1(x1)x2 − 1
2θ−1(x1)∂1θ(x1)

(46)
d2(x) = −iθ−1(x1)x1.

Then the action of the D1 derivative on A(x1, x2) may be written as follows:

D1A(x) = ∂1A(x) + ix2[θ−1(x1), A(x)]� − 1
2 [θ−1(x1)∂1θ(x1), A(x)]�. (47)

It is worth noting that, since θ depends only on x1, θ−1(x1) coincides with the usual inverse
function

On the other hand, D2 is given by

D2A(x) = i[θ−1(x1)x1, A(x)]�, (48)

and it does not lead immediately to a similarly simple expression, involving a detached term
with ∂2. Indeed, after a little algebra one sees that

D2A(x) = (1 − x1θ
−1(x1)∂1θ(x1))∂2A(x) + · · · (49)

where the omitted terms involve higher powers of ∂2 acting on A.
However, the problem of coping with the previous expression for D2 can be entirely

avoided by recalling that, since the noncommutative function θ(x) depends only on x1, a
simpler definition of a derivative should exist as a reflection of the invariance of θ under x2

translations. Indeed, the outer derivative

D2A(x) ≡ ∂2A(x), (50)
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satisfies all the properties of a derivation:

∂2(A � B) = ∂2A � B + A � ∂2B,

∫
dµ(x)∂2A(x) = 0 (51)

for any A(x) vanishing at infinity. We shall henceforth assume that D2 stands for (50), while
D1 corresponds to (47).

Of course, D1 and D2 cannot be simultaneously diagonalized (a property that also holds
true when both are inner derivatives). Their commutator reads

[D1,D2]A(x) = −i[θ−1(x1), A(x)]�, (52)

which is akin to a noncommutative curvature. The relation between Poisson structure and
curvature has been considered in [21].

This completes our discussion on the tools required to construct a field theory over C∞
� .

Again, the simplest case corresponds to the noncommutative generalization of a real scalar
field action S(φ):

S(φ) = l2
∫

dt dµ(x)

(
1

2
Dνφ(x) � Dνφ(x) + V�(φ)

)
, (53)

which is the functional transcription of the operatorial action (6). We have introduced the
parameter l, with the dimensions of a length, in order to have a dimensionless action S. l can
be naturally associated with the typical length defined by

√
θ(x1). φ satisfies the constraint

(29) and V�[φ(x)] = S(V [φ(x̂)]) is assumed to be positive.

4.2. Interpretation

Formulae (47), (50) and (52) have an intuitive physical interpretation in terms of the Landau
problem [9]. For a charged particle of mass m moving in the plane in the presence of a
perpendicular magnetic field depending only on one of the coordinates: B = B(x1), the
Lagrangian is

L = 1
2mẋ2

i − ẋiAi(x).

Since B = ∂1A2 − ∂2A1, we can choose, for the vector potential,

A1 = −x2B(x1) + ϕ(x1), A2 = 0,

where ϕ(x1) accounts for the remanent gauge freedom. The mechanical momentum operators,
defined as

π̂j = −i∂j + Aj(x̂),

have the commutation relations

[π̂1, π̂2] = −iB(x̂1).

Their utility comes from the fact that the Hamiltonian is

H = 1

2m
π2

i .

Remembering that the noncommutativity (31) is associated with the reduction to the
lowest Landau level [22, 12] , we are naturally led to identify the Dj with the mechanical
momenta: Dj → iπ̂j . Then −[θ−1(x1), ]� is interpreted as the noncommutative generalization
of a magnetic field and the Dj correspond to the gauge choice

A1 = x2[θ−1(x1), ]� +
i

2
[θ−1(x1)∂1θ(x1), ]�, A2 = 0.
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5. Boundary contribution

In this section we study the consequences of extending the previous formulae to a case in
which θ(x1) has a zero. As we will see, this has interesting physical consequences, which we
shall study for the case of a theory defined by a noncommutative scalar field action.

Assuming that θ(x1) has only one zero, at x1 = 0,D1 and
∫

dµ(x) are ill-defined at
x1 = 0; furthermore, from the eigenvalue equation for 〈x1|x2〉, one finds that 〈x1|x2〉 exists
and it is unique only for x1 ∈ (0,∞) or x1 ∈ (−∞, 0), but not for the whole real axis. A
restriction of the operators to only one of those intervals naturally suggests itself. We shall
represent the operators x̂1 and x̂2 over the subspace corresponding to the eigenvalues in the
interval (0,∞). Note that the presence of a zero in θ has led naturally to the existence of a
boundary: (x1 = 0, x2) in the configuration space. This boundary corresponds to the region
where the coordinates commute, and it defines a (lower dimensional) commutative theory.

To deal with the singularities at x1 = 0, we introduce a parameter ε such that x1 ∈ (ε,∞),
and ε → 0 amounts to approaching the boundary (which cannot be exactly reached, since
some operations would be ill-defined there). At the operatorial level, this restriction can be
achieved by the introduction of a projection operator Pε(x̂1), such that Pε(x1) = H(x1 − ε),
where H(x1 − ε) is Heaviside’s step function. For instance, the trace over x1 ∈ (ε,∞) can be
‘regulated’ (to avoid the boundary) as follows:

Tr(Pε(x̂1)A(x̂)). (54)

Translating this into the functional language, this means to consider regulated integrals Iε, of
the form

Iε =
∫

dµ(x)Pε(x1) � A(x), (55)

with dµ(x) given by (35). Recalling (38), this integral can always be written as

Iε =
∫

dµ(x)Pε(x1)A(x). (56)

On the other hand, the derivatives Di defined in equations (47) and (50) are well defined on
x1 ∈ (ε,∞). However, due to the presence of the projector in the integration measure, the
regulated integral of a derivative is no longer zero:∫

dµ(x)Pε(x1)DiA(x) = −
∫

d µ(x)(DiPε(x1))A(x). (57)

Since, from (47),

DiPε(x1) = δ1i∂1Pε(x1) = δ1iδ(x1 − ε),

we arrive to ∫
dµ(x)Pε(x1)DiA(x) = −δ1i

∫
dx2

2πθ(ε)
A(x1 = ε, x2). (58)

Therefore, a boundary contribution is generated. This property is to be expected from the
physical point of view, since there should be a positive ‘jump’ in the number of degrees of
freedom when the theory becomes commutative.

Let us apply the previous procedure to a scalar field, whose regulated action is

S = l2

2

∫
dt dµ(x)Pε(x1)Dνφ(x) � Dνφ(x), (59)

where Dν = (∂0,D1, ∂2). After integrating by parts, and applying (58), we see that

S = l2

2

∫
dt dµ(x)Pε(x1)

1

2
(φ(x) � D2φ(x) + D2φ(x) � φ(x)) + Sb (60)
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where

Sb ≡ − l2

4πθ(ε)

∫
dt dx2

1

2

(
φ(x) � D1φ(x) + D1φ(x) � φ(x)

)∣∣∣
x1=ε

. (61)

The first (‘bulk’) term does not generate any boundary contribution. However, the second
term Sb, which is a by-product of the zero at x1 = 0, is a boundary term.

Sb is a (1 + 1)-dimensional action on the boundary x1 = ε which, in general, has a
complicated dynamics. To derive a more explicit form, we take into account (42) and (47) to
write

D1φ(x) = ∂1φ(x) + ix2θ
−1(x1)φ(x) − ix2

∑
r

ar (x1)br(−iθ(x1)∂1 + x2)θ
−1(x1)

− 1

2
∂1 ln θ(x1)φ(x) +

1

2

∑
r

ar (x1)br(−iθ(x1)∂1 + x2)∂1 ln θ(x1), (62)

where we used the expansion

φ(x1, x2) =
∑

r

ar (x1)br(x2). (63)

Besides, we have

φ(x) � D1φ(x) =
∫

dµ(x̃)Pε(x̃1) exp[i(x2 − x̃2)	g(x1, x̃1)]φ(x1, x̃2)D1φ(x̃1, x2), (64)

and an analogous expression for φ(x) � D1φ(x).
A non-trivial boundary contribution is then derived, whose explicit behaviour depends

upon the precise form of θ(x1). Note that the �-product, when conveniently expanded, will
introduce also derivatives with respect to x2. This is illustrated by the following example.

5.1. Example

The simplest situation occurs when

θ(x1) = lgx1, (65)

where the dimensionless parameter g controls the ‘strength’ of the noncommutativity. Here
we shall perform an expansion valid for g 	 1, as this approximation serves to the purpose of
exhibiting a local form for the term (61). For an arbitrary g, the term is of course non-local.

The first step is to compute

	g(x1, x̃1) = (lg)−1 ln
x̃1

x1
. (66)

Substituting (65) in (62), we have

D1φ(x1, x2) = ∂1φ(x1, x2) +
x2 + ilg/2

x1

φ(x1, x2 + ilg) − φ(x1, x2)

ilg
. (67)

When g is very small (at l fixed),

D1φ(x1, x2) = ∂1φ(x1, x2) +
x2

x1
∂2φ(x1, x2) +

ilg

2

[
x2

x1
∂2

2 φ(x1, x2) +
1

x1
∂2φ(x1, x2)

]
+ · · · .

(68)

In φ � D1φ + D1φ � φ there is a factor

exp[i(x2 − x̃2)	g(x1, x̃1)] = exp[i(lg)−1(x2 − x̃2) ln(x̃1/x1)].
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so in the g → 0 limit the stationary phase approximation is valid. To express φ � D1φ +
D1φ � φ as a local series in powers of g, we have to expand around x2: x̃2 = x2 + gξ . After
some algebraic manipulations, we arrive to the leading contribution for ε → 0:

Sb = 1

2

l

4πgε2

∫
dt dx2

[
φ2 + (gl)2(∂2φ)2 − 2

3
(gl)2x2φ∂3

2 φ + O(g2ε, gε2)

]
, (69)

where the field is evaluated at x1 = ε. To get a reduced field with the proper ((1 + 1)

dimensional) canonical dimension, we make the redefinition:

φ̃(x2) =
( 1

4π

)1/2 l

ε

√
glφ(ε, x2). (70)

Hence

Sb = 1

2

∫
dt dx2

[
(∂2φ̃)2 +

1

(gl)2
φ̃

2 − 2

3
x2φ̃∂3

2 φ̃ + · · ·
]

. (71)

Since the reality condition (29) for θ given by equation (65) can be written as

φ(x) = φ̄(x) + O(g),

Sb contains a real (up to order g) mass term contribution in (1+1) dimensions, with a mass M
inversely proportional to g, given by

M = 1

gl
. (72)

The action is not translation invariant, something that can be understood as a relic of the
existence of an external (non-constant) magnetic field. Furthermore, it is time independent,
and it may be interpreted as proportional to the static energy of the boundary.

Note that this action comes from the first two terms in a small-g expansion for
φ � D1φ + D1φ � φ, and it already has some physical information. The leading contribution,
for example, goes like g−2, and is precisely the kind of term that one would introduce to
enforce the Dirichlet boundary condition φ(x1 = 0, x2) = 0. The higher order corrections
(also at order 1/ε) yield terms containing derivatives of the scalar field on the boundary.

6. Conclusions

In this paper we have discussed some aspects of space-dependent planar noncommutativity,
based on a particular mapping between normal-ordered operators and functions. The use of
such a mapping has proved to be quite useful, since it allows one to derive explicit forms for
the basic tools of the corresponding noncommutative field theory.

Guided by the operatorial description of section 2, in section 3 we defined an integral,
derivatives, and adjointness on C∞

� . A further restriction to the case θ(x1, x2) = θ(x1)

allowed us to compute explicitly the �-product obtaining the rather simple expression (36) and
other useful relations (38)–(42). The results for that case are consistent with those of [15]
(equations (20)–(28) of that paper), in the sense that the square root of the metric is related to
θ in the same way we have found to be the case in the integration measure.

Equation (36) is valid for quite general functions θ(x1). In particular, in section 5, we
showed how to generalize our approach to a function θ(x) vanishing along the line x1 = 0.
This is a very interesting situation, since in the line x1 = 0 there is a transition from a
noncommutative theory to a commutative one. Of course, the transition is not continuous
and many objects from the noncommutative theory are ill-defined over that region. The same
situation appears when one takes the limit θ → 0 in the constant-θ case. Therefore, the zero
creates a boundary in the configuration space that cannot be reached. We proved, starting
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from a noncommutative scalar field theory, that there are boundary contributions to the action,
deriving the explicit form of its first few terms for the case θ(x1) = αx1.

A natural question that arises at this point refers to the relation between this approach to
construct a noncommutative �-product and deformation quantization results, as stated in [14].
If an expansion in powers of θ(x1) and its derivatives is valid, then the �-product defines a
deformation quantization. Indeed, equation (43) defines, according to [14, 20], a star product.
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